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SUPPLEMENTARY MATERIAL
FOR DEEPLOC 2.0

Supplementary Table 1. Webserver estimated time per sequence. Note that
the model load time is constant for any number of input sequences, whereas
the prediction and plot time scale linearly with the number of sequences.

ESM1b ProtT5
Short sequences (Average length: 104)

Model load time (s) 11.07 26.80
Prediction time (s / seq) 0.83 3.93
Plot time (s / seq) 2.38 2.57

Long sequences (Average length: 400)

Model load time (s) 11.09 26.09
Prediction time (s / seq) 3.29 7.33
Plot time (s / seq) 7.94 7.97

1 DATA PARTITIONING

To generate high-quality data partitions for the SwissProt
dataset, we adopted the procedure described by Gı́slason
et al. (7) to generate label-balanced splits for 5-fold cross-
validation. This procedure ensures that each pair of train and
test fold does not share sequences that have global sequence
identity greater than 30% as determined using ggsearch36,
which is a part of the FASTA package (8).

The Human Protein Atlas (9) project provides annotation
for 78,136 proteins. The HPA independent dataset was
constructed using the following steps:

1. Homology reduction to ensure a maximum of 30%
sequence identity to the whole SwissProt dataset using
USEARCH v11.0.667, 32-bit (10). This leaves 23,422
proteins.

2. Selection of only ”Enhanced” or ”Supported”
annotations to improve the reliability of labels.
This leaves 5,523 proteins,

3. Clustering of sequences with 90% identity threshold
and selecting the centroids using USEARCH v11.0.667,
32-bit, to reduce measuring correlated errors. Also
Removing Peroxisome and Lysosome/Vacuole
localizations since they are few in number. This
leaves 2445 proteins

4. Additionally, we remove sequences that have a greater
than 30% sequence identity to any sequence from the
multi-label eukaryote dataset (11), which was used to
train Fuel-mLoc. This leaves 1,717 proteins.

2 DEEPLOC 2.0: IMPLEMENTATION DETAILS

2.1 Transformer models:
We use three publicly available transformer models, the
12-layer ESM (Evolutionary Scale Modelling, 12) model
with 84M parameters, the 33-layer ESM model with
650M parameters (13), and the 3B parameter ProtT5-XL-
UniRef50 model (14), referred to as ESM12, ESM1b, and

Supplementary Figure 1. The subcellular localization statistics of the cross-
validation and independent test datasets.
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Supplementary Table 2. SwissProt cross-validation dataset: Number of proteins in each location and sublocations that were grouped together under the same
main location

Location No. of proteins Sublocations
Nucleus 9720 Envelope, inner and outer membrane, matrix, lamina, chromosome,

nucleus speckle
Cytoplasm 9870 Cytoplasm (cytosol and cytoskeleton)
Extracellular 3301 Extracellular
Mitochondrion 2590 Envelope, inner and outer membrane, matrix, intermembrane space
Cell membrane 4187 Apical, apicolateral, basal, basolateral, lateral, cell membrane, cell

projection
Endoplasmic reticulum (ER) 2180 ER membrane and lumen, microsome, rough ER, smooth ER,

Sarcoplasmic reticulum
Plastid 1047 Plastid membrane, stroma and thylakoid
Golgi apparatus 1279 Golgi apparatus membrane and lumen
Lysosome/Vacuole 1496 Contractile, lytic and protein storage vacuole, vacuole lumen and

membrane, lysosome lumen and membrane
Peroxisome 304 Peroxisome matrix and membrane

Supplementary Table 3. Sorting signals dataset: Signal annotations and their sources from the literature

Signal Count Source
Signal Peptides (SP) 1011 (1), (2) and (3)
Transmembrane domains (TM) 260 (2) (Note that we only use the first domain which has been shown to

direct localization (4, 5))
Mitochondrial transit peptide (MT) 242 (3)
Chloroplast transit peptide (CH) 90 (3)
Thylakoidal lumen composite
transit peptide (TH)

42 (3)

Nuclear localization signal (NLS) 148 (6)
Nuclear export signal (NES) 100 (6)
Peroxisome targeting signal (PTS) 127 We filtered the SwissProt motif annotations to contain either

”peroxisome”, ”peroxisomal” or ”microbody” in their description.

ProtT5 respectively throughout the rest of the manuscript.
Additionally a suffix ”(S)” or ”(M)” is added to indicate
whether the model was trained with single or multi-location
labels.

The maximum sequence length used for training was 1022
for the ESM models and 4000 for ProtT5. Proteins that
exceeded this length had the middle portion of their sequence
removed so that the ends are retained. This value is chosen
to be lower for ESM models because of the limitations of the
ESM1b model architecture.

2.2 Multi-label prediction loss
We used weighted focal loss (15) with the binary cross-
entropy objective to train the location predictions. The weight
of each of the ten localization labels was set to be inversely
proportional to the label frequency in the training dataset. This
is done so that all labels are represented equally in the loss.
The γ parameter of the focal loss is set to 1 following previous
works that use similar losses for multi-label classification
(16, 17).

pl=yp+(1−y)(1−p) (1)

LML=
∑
lϵL

−wl(1−pl)
γ log(pl) (2)

where L is the set of all labels, y is the target label, wl is the
weight for the label, p is the output probability for the label,
and γ is focal loss parameter.

2.3 Supervision using sorting signals
Normalized KL-divergence loss between the attention and the
annotated signal is used whenever available. Additionally, we
weight the loss to make the effective number of samples of
each signal type the same.

LKL=

L∑
i

pilog(
pi
qi
) (3)

where L is the length of the full sequence, q is the attention.
p is the target probability distribution which is defined as
follows, it is 0 in positions where the sorting signal is not
present and 1

Lp
otherwise, where Lp is the length of the sorting

signal.

2.4 DCT-prior-based regularization
In previous work, Tseng et al. (18) regularized the saliency
(input times gradient) based on the Fourier transform and
found that this improves the interpretability and stability of
training by increasing the signal-to-noise ratio. We use this
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idea for our attention-pooling layer instead. It is known that
some sorting signals are present at the N- and C- termini
and thus we expect the learned attention to mimic this. Since
the Fourier transform is computed assuming the periodicity
of the signals, discontinuities at the ends of the sequence
lead to artifacts. We avoid this issue by replacing the Fourier
transform with the Discrete-Cosine Transform (DCT).

We first smooth the raw attentions scores (before softmax)
using a gaussian 1-d convolutional filter of size 5 clipped
to one standard deviation (K). The attention is then padded
on both sides by repeating the value at the ends. The
regularization loss is then computed by adding up the
coefficients using the following weighting scheme. The first
L
6 normalized DCT coefficients have the weight 1, and the
rest are weighted using an exponentially decaying function

1
1+x0.2 . Here, L is the length of the sequence and x is the

index of the coefficient subtracted by L
6 .

A=Softmax(K ∗S) (4)

D=
|DCT (A)|∑
|DCT (A)|

(5)

LDCT =

L∑
i

wiDi (6)

where L is the length of the full sequence, S is the raw
attention scores. K is the gaussian kernel described above,
∗ operation represents convolution. wi’s are the weights
according to the scheme described above.

L=LML+0.1LKL+0.1LDCT (7)

The final loss is a weighted combination of the three losses.
The attention supervision loss and the regularization loss are
scaled by 0.1 to ensure that the secondary losses do not
dominate the multi-label loss.

2.5 Signal type prediction
Since optimizing over multiple tasks is quite challenging, we
freeze the model parameters after training with the multi-
label localization and sorting signals prediction objectives.
The pooled embedding vector after the attention and the final
prediction probabilities are used as the input to a Multi-layer
perceptron (MLP) to predict signal types in a multi-label
fashion.

2.6 Training details
Different learning rates for the transformer encoder (5×
10−6 if finetuning, 0 otherwise) and the attention-pooling,
classification layer (5×10−5) were used. The training was
terminated after a fixed number of epochs to ensure that
the models always overfit based on the randomly sampled
validation set. The max number of epochs was 5 in the case
of finetuning and 15 for the frozen models. The final model
was picked by taking the best validation loss over all epochs.

Mixed-precision and model sharding techniques were utilized
to efficiently fine-tune the models. The PyTorch-lightning
(19) library and hardware provided by Google Colaboratory
GPUs1, and 2 Tesla V100s were used for training and testing.

3 EXPERIMENTS

3.1 Benchmarking existing methods
For our experiments, DeepLoc 1.0, a retrained version
of DeepLoc 1.0, and ESM12 (S) are the single-location
predictors used as a baseline. The rest predict multiple
locations. Each method considers a different set of possible
locations, therefore we map each of these to the locations
defined in Section 2.1. After reduction, the HPA dataset either
does not contain or has very few proteins in Extracellular,
Plastid, Lysosome/Vacuole, and Peroxisome locations and
so we exclude these locations from the true labels. A
consequence of this is that single label predictors can have an
average number of predicted labels to be less than one since
the predictions can fall outside these six true labels on the HPA
independent test set.

Sequence-based methods: For YLoc+, we downloaded the
standalone version of the predictor and used the animal, plant
or fungi predictor whichever was appropriate, without the
GO-terms option. DeepLoc-1.0 was retrained using the same
procedure as originally described in (20).

GO-based methods: Sequence-based methods can be
easier to benchmark against since proper homology-
partitioning between the training and test sets ensures that the
performance evaluation is a good estimate for unseen proteins.
On the other hand, GO-based methods rely on local-alignment
scores using a large database of indirect localization labels
i.e. GO terms. Since the partitioning is only done considering
the training and test sets and not the database, there is
potential homology ”leakage”. This can lead to performance
overestimation of these methods. We found that about ∼93%
of sequences after Step 4 in Section 3.1 have a sequence-
identity match of greater than 30% with the ProSeq-GO
database. Therefore, we reimplement Fuel-mLoc, changing
only the database used. Based on the global sequence identity
measured using USEARCH, we exclude 10,550 sequences
(about 2% of the database), from the BLAST search. To ensure
a fair comparison, first we consider Fuel-mLoc, for which the
webserver was used to obtain the predictions, by selecting
”Eukaryotes” and ”Local database” in the options. Then,
we reimplement it without any changes to the database to
confirm that our version is as close to the original as possible.
Finally, we use the reduced database to produce the results for
comparison. Detailed results are provided in Supplementary
Table 5.

The mapping of locations for the methods used in the
comparison is provided in Supplementary Table 2 and 3.

3.2 Metrics for subcellular localization
We use the following metrics to comprehensively quantify the
classification performance on the datasets:

1https://colab.research.google.com/

https://colab.research.google.com/
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• Number of predicted labels: Averaged over all
predictions, this demonstrates the bias of the predictor.

• Accuracy: Requires the exact location(s) to be
predicted. Since the dataset is skewed towards proteins
with single localization, this metric provides an
advantage to single-label predictors.

• Jaccard: Overlap between the actual and predicted
labels over their union.

• MicroF1: F1 score considering the total number of true
positives, false negatives, and false positives.

• MacroF1: F1 score computed for each class and
then averaged, providing equal emphasis on rare and
frequent classes.

• Matthews Correlation Coefficient: Measured for each
class, it requires the model to perform well on all four
confusion matrix entries.

For our multi-label prediction models, we computed the
thresholds for each class by maximizing the MCC on the
training set. The prediction thresholds can be found on the
output page after submitting proteins to the webserver.

3.3 Measuring the interpretability of attention
For quantifying the relevance of attention to the sorting
signals, we use the following metrics:

• Importance in signal: Total attention mass present
within the signal.

• Signal over background: The average attention value
within the signal over the average value outside the
signal.

• Metric Entropy: The entropy of the attention normalized
by the information length of the protein. It ranges from
0 to 1, with lower values indicating that larger attention
mass is placed on fewer residues.

• KL-Divergence: Distributional dissimilarity between
the signal and attention.

4 RESULTS

4.1 Preliminary questions
Improvements due to transformer models: We trained
ESM12 (Single) and retrained DeepLoc-1.0 on our cross-
validation dataset, but using only proteins with a single
location. From Table 6, we find that ESM12 (Single)
outperforms both DeepLoc-1.0 and its retrained version
significantly. This is to be expected since ESM12 (Single) is
a much larger model with unsupervised pretraining on a large
dataset.

Improvements due to multi-label annotations:
Comparing ESM12 (Single) and ESM12 (Multi) we see
that while the absolute accuracy has dropped, the rest of the
metrics show that the predictions are indeed better overall,
as well as for each location. Thus we conclude that the
multi-label annotations provide additional useful information
to the models.

Supplementary Table 4. YLoc to DeepLoc mapping

YLoc Location DeepLoc location
nucleus Nucleus
mitochondrion Mitochondrion
plasma membrane Cell membrane
extracellular space Extracellular
Golgi apparatus Golgi apparatus
lysosome Lysosome/Vacuole
vacuole Lysosome/Vacuole
chloroplast Plastid
cytoplasm Cytoplasm
peroxisome Peroxisome
ER Endoplasmic reticulum

Supplementary Table 5. Fuel-mLoc to DeepLoc mapping

Fuel-mLoc Location DeepLoc location
Acrosome Cytoplasm
Cell-Membrane Cell membrane
Cell-Wall Cell membrane
Chloroplast Plastid
Cyanelle Cytoplasm
Cytoplasm Cytoplasm
Cytoskeleton Cytoplasm
Endosome Cytoplasm
Extracellular Extracellular
Golgi-Apparatus Golgi apparatus
Hydrogenosome Cytoplasm
Lysosome Lysosome/Vacuole
Centrosome Cytoplasm
Endoplasmic-Reticulum Endoplasmic reticulum
Melanosome Cytoplasm
Microsome None
Mitochondrion Mitochondrion
Nucleus Nucleus
Peroxisome Peroxisome
Spindle-Pole-Body Cytoplasm
Synapse Extracellular
Vacuole Lysosome/Vacuole

4.2 Loss term ablation
We trained the largest and smallest models with and without
the two additional losses for the attention layer i.e. the
supervision and regularization losses. We observed that the
multi-label localization performance was mostly unaffected.
However, the interpretability increases dramatically by
including these loss terms. Supplementary tables 8, 9 show
that when trained with these terms included, the signals are
more prominent compared to the background, more of the
attention is placed within the signal, the signal is sparser,
and the KL-Divergence is lower implying that the attention
correlates better with the signal.
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Supplementary Table 6. HPA Dataset. Independent test set. Performance of all the methods

YLoc+ DeepLoc-1.0 DeepLoc-1.0 Fuel-mLoc Fuel-mLoc Fuel-mLoc
-Animalα β Euk Euk γ Euk γ,θ

Type Multi Single Single Multi Multi Multi
Pred. Num. Labels 1.44 0.89 0.90 1.03 1.06 1.00
(Actual: 1.22)
ACC 0.23 0.37 0.38 0.48 0.48 0.38
Jaccard 0.41 0.42 0.44 0.56 0.57 0.46
MicroF1 0.51 0.46 0.47 0.61 0.62 0.52
MacroF1 0.34 0.35 0.35 0.55 0.55 0.39
Cytoplasm 0.14 0.23 0.22 0.33 0.35 0.23
Nucleus 0.20 0.28 0.33 0.53 0.53 0.41
Cell membrane 0.20 0.23 0.25 0.34 0.35 0.32
Mitochondrion 0.37 0.39 0.43 0.72 0.71 0.33
Endoplasmic reticulum 0.12 0.23 0.12 0.37 0.36 0.14
Golgi apparatus 0.08 0.10 0.17 0.44 0.45 0.24

LAProtT5 ESM12 ESM1b ESM1b ProtT5
δ δ

Type Single Multi Multi Multi Multi
Pred. Num. Labels 0.94 1.14 1.15 1.28 1.21
(Actual: 1.22)
ACC 0.45 0.33 0.34 0.36 0.39
Jaccard 0.52 0.47 0.48 0.52 0.53
MicroF1 0.56 0.55 0.57 0.60 0.60
MacroF1 0.43 0.41 0.44 0.43 0.46
Cytoplasm 0.33 0.26 0.29 0.31 0.36
Nucleus 0.45 0.42 0.41 0.40 0.44
Cell membrane 0.30 0.32 0.34 0.31 0.36
Mitochondrion 0.59 0.57 0.60 0.67 0.56
Endoplasmic reticulum 0.22 0.17 0.20 0.09 0.17
Golgi apparatus 0.26 0.16 0.17 0.19 0.31

α = GO-terms were not used
β = Retrained on the new CV dataset

γ = using local implementation
θ = using reduced ProSeq database
δ = Transformer parameters frozen
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Supplementary Table 7. AUC scores on the Cross-Validation and HPA independent test set for selected methods that output scores for predictions

DeepLoc 1.0 DeepLoc 2.0
ESM1b ProtT5

AUC per location (↑ is better)

Cross-validation dataset

Cytoplasm 0.83 ± 0.01 0.88 ± 0.00 0.88 ± 0.01
Nucleus 0.86 ± 0.01 0.92 ± 0.01 0.93 ± 0.01
Extracellular 0.96 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
Cell membrane 0.84 ± 0.02 0.92 ± 0.00 0.93 ± 0.01
Mitochondrion 0.90 ± 0.02 0.93 ± 0.01 0.93 ± 0.01
Plastid 0.97 ± 0.00 0.98 ± 0.00 0.99 ± 0.00
Endoplasmic reticulum 0.83 ± 0.03 0.89 ± 0.01 0.90 ± 0.02
Lysosome/Vacuole 0.72 ± 0.04 0.83 ± 0.03 0.85 ± 0.03
Golgi apparatus 0.76 ± 0.03 0.84 ± 0.03 0.85 ± 0.01
Peroxisome 0.83 ± 0.04 0.91 ± 0.03 0.91 ± 0.03

Fuel-mLoc DeepLoc 1.0 DeepLoc 2.0
Euk ESM1b ProtT5

HPA independent test set

Cytoplasm 0.58 0.66 0.71 0.74
Nucleus 0.74 0.73 0.79 0.81
Cell membrane 0.64 0.67 0.76 0.78
Mitochondrion 0.71 0.82 0.87 0.88
Endoplasmic reticulum 0.54 0.64 0.70 0.75
Golgi apparatus 0.57 0.72 0.76 0.72
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Supplementary Table 8. Ablation of loss terms. DCT-based prior regularization and sorting signal supervision are indicated by Reg and Sup in short hand.

ESM12 ProtT5
No Reg & Sup With Reg & Sup No Reg & Sup With Reg & Sup

SP
Importance in Signal (↑) 0.11 ± 0.09 0.55 ± 0.30 0.22 ± 0.18 0.54 ± 0.31
Signal/Background (↑) 0.93 ± 0.23 24.27 ± 25.96 2.88 ± 2.69 22.17 ± 21.44
Metric Entropy (True: 0.57) 1.00 ± 0.00 0.73 ± 0.07 0.76 ± 0.08 0.72 ± 0.06
KL Div (↓) 2.57 ± 0.81 0.98 ± 0.85 2.75 ± 1.14 0.99 ± 0.86

TM
Importance in Signal (↑) 0.05 ± 0.04 0.46 ± 0.19 0.06 ± 0.07 0.50 ± 0.21
Signal/Background (↑) 0.89 ± 0.19 26.13 ± 21.05 1.66 ± 1.72 37.84 ± 34.39
Metric Entropy (True: 0.49) 1.00 ± 0.00 0.75 ± 0.07 0.78 ± 0.08 0.72 ± 0.06
KL Div (↓) 3.26 ± 0.67 1.12 ± 0.96 4.94 ± 1.41 1.12 ± 1.03

MT
Importance in Signal (↑) 0.16 ± 0.10 0.75 ± 0.18 0.66 ± 0.17 0.76 ± 0.17
Signal/Background (↑) 1.29 ± 0.38 41.98 ± 33.08 23.50 ± 18.12 46.74 ± 43.68
Metric Entropy (True: 0.61) 0.99 ± 0.01 0.70 ± 0.07 0.68 ± 0.07 0.70 ± 0.07
KL Div (↓) 2.08 ± 0.67 0.50 ± 0.48 1.37 ± 0.53 0.50 ± 0.48

CH
Importance in Signal (↑) 0.30 ± 0.14 0.85 ± 0.15 0.74 ± 0.16 0.85 ± 0.13
Signal/Background (↑) 1.47 ± 0.37 40.98 ± 31.11 15.66 ± 11.27 35.52 ± 25.38
Metric Entropy (True: 0.72) 0.99 ± 0.01 0.77 ± 0.07 0.71 ± 0.06 0.77 ± 0.06
KL Div (↓) 1.34 ± 0.52 0.29 ± 0.39 1.39 ± 0.58 0.31 ± 0.31

TH
Importance in Signal (↑) 0.40 ± 0.11 0.94 ± 0.06 0.86 ± 0.07 0.95 ± 0.05
Signal/Background (↑) 1.53 ± 0.38 77.01 ± 52.88 18.05 ± 8.63 59.95 ± 40.91
Metric Entropy (0.79) 0.99 ± 0.01 0.80 ± 0.03 0.72 ± 0.07 0.79 ± 0.04
KL Div (↓) 0.95 ± 0.27 0.13 ± 0.16 1.38 ± 0.58 0.24 ± 0.16

NLS
Importance in Signal (↑) 0.04 ± 0.04 0.16 ± 0.15 0.10 ± 0.10 0.17 ± 0.16
Signal/Background (↑) 1.15 ± 0.27 12.00 ± 15.21 5.69 ± 6.27 16.05 ± 33.60
Metric Entropy (True: 0.38) 0.99 ± 0.01 0.77 ± 0.08 0.79 ± 0.09 0.79 ± 0.07
KL Div (↓) 3.78 ± 0.87 2.62 ± 1.29 3.81 ± 1.08 2.60 ± 1.32

NES
Importance in Signal (↑) 0.03 ± 0.02 0.03 ± 0.04 0.03 ± 0.07 0.06 ± 0.09
Signal/Background (↑) 0.96 ± 0.33 0.99 ± 1.69 1.17 ± 2.00 2.30 ± 3.15
Metric Entropy (True: 0.42) 0.99 ± 0.01 0.75 ± 0.12 0.80 ± 0.07 0.81 ± 0.06
KL Div (↓) 3.74 ± 0.70 4.48 ± 1.16 5.05 ± 1.49 3.88 ± 1.44

PTS
Importance in Signal (↑) 0.01 ± 0.01 0.56 ± 0.26 0.47 ± 0.25 0.70 ± 0.28
Signal/Background (↑) 1.46 ± 0.37 335.31 ± 378.09 205.88 ± 249.21 661.50 ± 504.62
Metric Entropy (True: 0.20) 0.99 ± 0.01 0.47 ± 0.15 0.55 ± 0.16 0.39 ± 0.16
KL Div (↓) 4.50 ± 0.50 1.01 ± 1.24 1.60 ± 1.15 0.72 ± 1.05

GPI
Importance in Signal (↑) 0.25 ± 0.14 0.70 ± 0.14 0.60 ± 0.18 0.63 ± 0.11
Signal/Background (↑) 0.97 ± 0.11 11.46 ± 8.83 6.44 ± 3.70 7.57 ± 5.91
Metric Entropy (True: 0.75) 1.00 ± 0.00 0.82 ± 0.07 0.69 ± 0.09 0.76 ± 0.05
KL Div (↓) 1.55 ± 0.59 0.63 ± 0.50 2.49 ± 0.61 1.85 ± 0.47
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Supplementary Table 9. Ablation of loss terms. DCT-based prior regularization and sorting signal supervision are indicated by Reg and Sup in short hand.

ESM12 ProtT5
No Reg & Sup With Reg & Sup No Reg & Sup With Reg & Sup

Predicted Num. Labels 1.28 ± 0.03 1.29 ± 0.02 1.25 ± 0.03 1.26 ± 0.02
Accurary 0.50 ± 0.02 0.51 ± 0.02 0.54 ± 0.02 0.55 ± 0.02
Jaccard 0.65 ± 0.02 0.66 ± 0.02 0.69 ± 0.01 0.69 ± 0.01
MicroF1 0.70 ± 0.02 0.70 ± 0.02 0.73 ± 0.02 0.73 ± 0.01
MacroF1 0.60 ± 0.01 0.62 ± 0.02 0.66 ± 0.01 0.66 ± 0.01

MCC per location (↑ is better)

Cytoplasm 0.58 ± 0.02 0.59 ± 0.01 0.61 ± 0.01 0.62 ± 0.01
Nucleus 0.63 ± 0.02 0.63 ± 0.02 0.69 ± 0.02 0.69 ± 0.01
Extracellular 0.83 ± 0.03 0.84 ± 0.03 0.83 ± 0.04 0.85 ± 0.04
Cell membrane 0.62 ± 0.02 0.63 ± 0.01 0.66 ± 0.02 0.66 ± 0.01
Mitochondrion 0.72 ± 0.02 0.72 ± 0.03 0.76 ± 0.03 0.76 ± 0.02
Plastid 0.86 ± 0.02 0.87 ± 0.01 0.90 ± 0.02 0.90 ± 0.01
Endoplasmic reticulum 0.47 ± 0.03 0.48 ± 0.03 0.53 ± 0.03 0.56 ± 0.03
Lysosome/Vacuole 0.23 ± 0.04 0.24 ± 0.06 0.30 ± 0.01 0.28 ± 0.04
Golgi apparatus 0.32 ± 0.05 0.30 ± 0.04 0.36 ± 0.05 0.34 ± 0.05
Peroxisome 0.24 ± 0.06 0.41 ± 0.09 0.55 ± 0.06 0.56 ± 0.08
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Supplementary Table 10. Results on the SwissProt CV dataset by kingdom. The per-location scores are MCC.

YLoc+ DeepLoc 1.0
Metazoa Fungi Viridiplantae Other Metazoa Fungi Viridiplantae Other

Accuracy 0.33 0.27 0.31 0.4 0.47 0.43 0.53 0.59
Jaccard 0.52 0.47 0.48 0.55 0.56 0.53 0.59 0.62
MicroF1 0.58 0.55 0.53 0.57 0.58 0.56 0.6 0.63
MacroF1 0.35 0.3 0.38 0.28 0.39 0.38 0.48 0.32

MCC Per location (↑ is better)

Cytoplasm 0.41 0.32 0.3 0.52 0.44 0.42 0.43 0.6
Nucleus 0.42 0.33 0.51 0.29 0.47 0.37 0.56 0.3
Extracellular 0.65 0.5 0.36 0.7 0.8 0.8 0.48 0.74
Cell membrane 0.48 0.26 0.35 0.23 0.56 0.36 0.48 0.24
Mitochondrion 0.44 0.52 0.46 0.49 0.56 0.61 0.58 0.67
Plastid 0 0 0.66 0 0 0 0.8 0.09
Endoplasmic reticulum 0.18 0.15 0.2 0.05 0.3 0.39 0.38 0.06
Lysosome/Vacuole 0.07 -0.01 0.13 0.08 0.03 0.1 0.09 -0.02
Golgi apparatus 0.11 0.07 0.18 -0.01 0.16 0.16 0.37 -0.01
Peroxisome 0.04 0.04 0.06 0 0.09 0.08 0.28 0.2

ESM1b ProtT5
Metazoa Fungi Viridiplantae Other Metazoa Fungi Viridiplantae Other

Accuracy 0.51 0.52 0.58 0.58 0.53 0.53 0.6 0.59
Jaccard 0.67 0.67 0.7 0.67 0.68 0.69 0.71 0.68
MicroF1 0.71 0.73 0.73 0.7 0.72 0.74 0.74 0.71
MacroF1 0.54 0.54 0.63 0.42 0.56 0.55 0.65 0.44

MCC per location (↑ is better)

Cytoplasm 0.6 0.6 0.57 0.7 0.61 0.61 0.6 0.72
Nucleus 0.65 0.61 0.74 0.37 0.68 0.65 0.77 0.47
Extracellular 0.86 0.88 0.53 0.79 0.86 0.88 0.55 0.79
Cell membrane 0.65 0.47 0.61 0.39 0.67 0.44 0.62 0.28
Mitochondrion 0.7 0.76 0.75 0.66 0.73 0.79 0.74 0.69
Plastid 0 0 0.87 0.2 0 0 0.89 0.2
Endoplasmic reticulum 0.5 0.59 0.46 0.26 0.53 0.6 0.51 0.43
Lysosome/Vacuole 0.21 0.26 0.33 0.31 0.25 0.3 0.35 0.37
Golgi apparatus 0.34 0.29 0.53 0 0.3 0.24 0.59 0
Peroxisome 0.41 0.46 0.58 0.2 0.49 0.55 0.58 0.2


	Supplementary Material for DeepLoc 2.0
	Data Partitioning
	DeepLoc 2.0: Implementation Details
	Experiments
	Results
	REFERENCES


